Hopf bifurcation analysis in a fractional-order survival red blood cells model and PDα$\mathit{PD}^{\alpha} $ control
نویسندگان
چکیده
*Correspondence: [email protected] 1College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China Full list of author information is available at the end of the article Abstract In this paper, we put forward a fractional-order survival red blood cells model and study the dynamics through the Hopf bifurcation. When the delay transcends the threshold, a series of Hopf bifurcations occur at the positive equilibrium. Then, a fractional-order Proportional and Derivative (PD ) controller is applied to the proposed model for the Hopf bifurcation control. It is discovered that by setting proper parameters, the PD controller can delay or advance the onset of Hopf bifurcations. Therefore the Hopf bifurcation of the fractional-order survival red blood cells model becomes controllable to achieve desirable behaviors. Finally, numerical examples are presented to demonstrate the theoretical analysis.
منابع مشابه
HOPF BIFURCATION CONTROL WITH PD CONTROLLER
In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...
متن کاملHopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response
In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملBIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
In this paper, first we discuss a local stability analysis of model was introduced by P. J. Mumby et. al. (2007), with $frac{gM^{2}}{M+T}$ as the functional response term. We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef. Next, we consider this model under the influence of the time delay as the bifurcat...
متن کاملNormal forms of Hopf Singularities: Focus Values Along with some Applications in Physics
This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...
متن کامل